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Abstract We show how classic source-decomposition and subgroup-decomposition
methods can be reconciled with regression methodology used in the recent literature.
We also highlight some pitfalls that arise from uncritical use of the regression
approach. The LIS database is used to compare the approaches using an analysis
of the changing contributions to inequality in the United States and Finland.
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1 Introduction

What is the point of decomposing income inequality and how should we do it? For
some researchers the questions resolve essentially to a series of formal propositions
that characterise a particular class of inequality measures. For others the issues are
essentially pragmatic: in the same way as one attempts to understand the factors
underlying, say, wage discrimination [2] one is also interested in the factors underly-
ing income inequality and it might seem reasonable to use the same sort of applied
econometric method of investigation. Clearly, although theorists and pragmatists are
both talking about the components of inequality, they could be talking about very
different things. We might even wonder whether they are on speaking terms.
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The worry is that the standard theoretical approach, that employs a priori rea-
soning, and recent empirical approaches, that employ an application of regression
analysis, are founded upon independent and possibly conflicting bases. Could they
therefore provide conflicting messages to researchers and policy makers? However,
although the main strands of literature on inequality decomposition have developed
separately, this does not mean that they are necessarily inconsistent. It could be the
case that at the core of each of the approaches there is an essential common element
that can be used to establish a relationship between the principal approaches—the
“reconciliation” mentioned in our title. In this paper we show how the two main
methods of decomposition analysis (that are often treated as entirely separate) can be
developed within a common analytical framework. We investigate regression-based
techniques that are commonly used in empirical applications in various fields of
economics and show how the methodology required for this can be derived from the
a priori approach to factor- and source-decomposition. We apply these techniques to
data from the Luxembourg Income Study to illustrate how the reconciliation works
in practice.

The paper is organised as follows. Section 2 offers an overview of the decomposi-
tion literature. Our basic model is developed in Section 3 and this is developed into a
treatment of factor-source decomposition and subgroup decomposition in Sections 4
and 5 respectively. Section 6 provides the empirical application, Section 7 discusses
related literature and Section 8 concludes.

2 Approaches to decomposition

The two main strands of inequality-decomposition analysis that we mentioned in
the introduction could be broadly labelled as “a priori approaches” and “regression
models.”

2.1 A priori approaches

Underlying this approach is the essential question “what is meant by inequality
decomposition?” The answer to this question is established through an appropriate
axiomatisation.

This way of characterising the problem is perhaps most familiar in terms of
decomposition by subgroups. A coherent approach to subgroup decomposition
essentially requires (1) the specification of a collection of admissible partitions—
ways of dividing up the population into mutually exclusive and exhaustive subsets
and (2) a concept of representative income for each group. Requirement (1) usually
involves taking as a valid partition any arbitrary grouping of population members,
although other specifications also make sense [15]; requirement (2) is usually met by
taking subgroup-mean income as being representative of the group, although other
representative income concepts have been considered [1, 20, 21, 25, 26]. A minimal
requirement for an inequality measure to be used for decomposition analysis is that
it must satisfy a subgroup consistency or aggregability condition—if inequality in
a component subgroup increases then this implies, ceteris paribus, that inequality
overall goes up [36, 37]; the “ceteris paribus” clause involves a condition that the
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subgroup-representative incomes remain unchanged. This allows one to screen out
some inequality measures that do not even satisfy the minimal requirement [11], but
one can go further. By imposing more structure—i.e., further conditions—on the
decomposition method one can derive particular inequality indices with convenient
properties [3, 10, 33], a consistent procedure for accounting for inequality trends [23]
and an exact decomposition method that can be applied for example to regions [40]
or to the world income distribution [30]. By using progressively finer partitions it is
possible to apply the subgroup-decomposition approach to a method of accounting
for the contributory factors to inequality [13, 16].

The a priori approach is also applicable to the other principal type of
decomposability—the break-down by factor-source [29, 34, 35, 39]. As we will
see the formal requirements for factor-source decomposition are straightforward
and the decomposition method in practice has a certain amount in common with
decomposition by population subgroups. Furthermore the linear structure of the
decomposition (given that income components sum to total income) means that the
formal factor-source problem has elements in common with the regression-analysis
approach that we review in Section 2.2.

Relatively few attempts have been made to construct a single framework for both
principal types of decomposition—by subgroup and by factor source. A notable
exception is the Shapley-value decomposition [8, 38], which defines an inequality
measure as an aggregation (ideally a sum) of a set of contributory factors, whose
marginal effects are accounted eliminating each of them in sequence and computing
the average of the marginal contributions in all possible elimination sequences.
However, despite its internal consistency and attractive interpretation, the Shapley-
value decomposition in empirical applications raises some dilemmas that cannot
be solved on purely theoretical grounds. As argued by Sastre and Trannoy [32], if
all ambiguities about different possible marginalistic interpretations of the Shapley
rule are cleared up, this decomposition is dependent on the aggregation level of
remaining income components and is highly nonrobust. Some refinements have been
proposed to improve the Shapley inequality decomposition, including the Nested
Shapley [8] and the Owen decomposition [38], based on defining a hierarchical
structure of incomes. However, these solutions might face some difficulty in finding
a sensible economic interpretation and some empirical “solutions” only circumvent
the problem without solving it [31, 32]. Charpentier and Mussard [9] have also shown
that results derived from the Shapley value are limited in their applicability.

2.2 Regression models

The second analytical strand of analysis that concerns us here derives from a
mainstream econometric tradition in applied economics. Perhaps the richest method
within this strand is the development of a structural model for inequality decom-
position exemplified by Bourguignon et al. [4, 5], in the tradition of the DiNardo
et al. [14] approach to analysing the distribution of wages. This method carefully
specifies a counterfactual in order to examine the influence of each supposedly causal
factor. However, its attractiveness comes at a price: a common criticism is that it
is data hungry and, as such, it may be unsuitable in many empirical applications.
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Furthermore, the modelling procedure can be cumbersome and is likely to be
sensitive to model specification.

A less ambitious version of the regression-model approach is the use of a simple
regression model as in Fields [17], Fields and Yoo [18] and Morduch and Sicular
[27]. As with the structural models just mentioned, simple regression models enjoy
one special advantage over the methods reviewed in Section 2.1. Potential influences
on inequality that might require separate modelling as decomposition by groups or
by income components can usually be easily and uniformly incorporated within an
econometric model by appropriate specification of the independent variables.

2.3 An integrated approach?

It is evident that, with some care in modelling and interpretation, the a priori method
can be developed from an exercise in logic to an economic tool that can be used
to address important questions that are relevant to policy making. One can use the
subgroup-decomposition method to assign importance to personal, social or other
characteristics that may be considered to affect overall inequality. The essential step
involves the way that between-group inequality is treated which, in turn, focuses on
the types of partition that are considered relevant. One has to be careful: the fact
that there is a higher between-group component for decomposition using partition
A rather than partition B does not necessarily mean that A has more significance
for policy rather than B [24]. However, despite this caveat, it is clear that there
should be some connection between the between-group/within-group breakdown in
the Section 2.1 approach and the explained/unexplained variation in the Section 2.2
approach.

We want to examine this connection using a fairly basic model.

3 Basic model

To make progress it is necessary focus on the bridge between formal analysis and
the appropriate treatment of data. Hence we introduce the idea of data generating
process (DGP), i.e., the joint probability distribution that is supposed to characterize
the entire population from which the data set has been drawn.

Consider a set of random variables H with a given joint distribution F(H), where
H is partitioned into [Y, X] and X : = (X1, X2, ..., XK). Assume that we aim to model
Y as a function of X and a purely random disturbance variable U and that we can
write the relation in an explicit form with Y as function of (X, U)

Y = f (X, U |β) (1)

where β := (β1, ..., βK)′ is a vector of parameters. For example, we could think of Y
as individual income, of X as a set of observable individual characteristics, such as
age, sex, education, and of U as an unobservable random variable such as ability or
luck.
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For simplicity let us assume that the DGP takes a linear form and that the number
of observable characteristics is k. Hence, we can write:

Y = β0 +
K∑

k=1

βk Xk + U (2)

Typically one observes a random sample of size n from F(H),

{(yi, xi) = (yi, x1i, ...xki), i = 1, ...n},
where the observations are independent over i. One then generates predictions of
income for assigned values of individual characteristics using regression methods to
compute a vector b, as an estimate of β. The true marginal distribution function
of each random variable, which might be either continuous or discrete, is often
unknown in economic applications, as data do not come from laboratory experi-
ments, and one only knows the empirical distribution functions (EDF). The sample
analogue of model 2 can be written as:

y = β0 +
K∑

k=1

βkxk + υ,

where υ is the residual term. Provided that the standard assumptions such as
exogenous covariates and spherical error variance hold, one could use OLS methods
to estimate the income model1 obtaining

y = b0 +
K∑

k=1

bkxk + u, (3)

where bk is the OLS estimate of βk, k = 0, ...K, u = y −
(

b0 + ∑K
k=1 bkxk

)
is the OLS

residual.
Using the upper case letter for denoting a random variable (whose distribution

function is not known in typical survey settings) and the lower case letter for denoting
a size-n random sample from the same distribution function, the mean and inequality
function of Y are denoted by μ(Y) and I(Y), the mean and the inequality statistics
(i.e., functions of the data) with μ(y) = μ(y1, ..., yn) and I(y) = I(y1, ..., yn).

We can analyse the structure of the inequality of y (or of Y) in two different ways

• Subgroup decomposition. Suppose that a subset T ⊆ {1, ..., K} of the observables
consists of discrete variables such that xk (Xk) can take the values ξkj, j = 1, .., tk
where k ∈ T and tk is the number of values (categories) that can logically be
taken by the kth discrete observable. Then in this case we could perform a
decomposition by population subgroups, where the subgroups are determined by
the t categories, where t := ∏

k∈T tk. This decomposition could be informative—
what you get from the within-group component is an aggregate of the amount of
inequality that is attributable to the dispersion of the unobservable υ (U) and the

1We use a standard OLS regression for simplicity of exposition. Other regression methods that
employ a distance metric taken from an inequality index could also be used [28].
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remaining continuous observables xk, k /∈ T (Xk, k /∈ T). If all the observables
were discrete the within-group component would be an aggregation of Iy|x (IY|X)
and the between-group component would give the amount of inequality that
would arise if there were no variation in υ (U).

• Factor-source decomposition. We can also interpret (Eq. 2) as the basis for
inequality by factor source expressing I(Y) in terms of component incomes
C1, ..., CK+1, where

Ck := βk Xk, k = 1, ..., K (4)

CK+1 := U (5)

Notice that the constant term β0 does not contribute to I(y) and, similarly, if one
adds or subtract an arbitrary constant to or from a regressor this will only change
the constant with no effect on total inequality. For more details, see Section 4
below.

The application of these decomposition methods has been criticised on a number
of grounds. Subgroup decomposition is criticised because it requires partitioning the
population into discrete categories although some factors (for example, age) are
clearly continuous variables. Moreover, handling more than very few subgroups at
the same time can be cumbersome. The factor-source decomposition presented in the
Shorrocks [34] form presents the useful property of being invariant to the inequality
measure adopted,2 however it can be criticised as being limited to a natural decom-
position rule where total income is the sum of different types of income (for example
pension, employment income and capital income). The subgroup and factor-source
decomposition methods are sometimes criticised as being purely descriptive rather
than analytical and as being irreconcilable one with another. Moreover they are tools
which are often not well known in some fields of economics where the main focus is
on the determinants of income or the market price of personal characteristics, which
are estimated as the OLS coefficient in a Mincer-type wage regression.

The two decomposition methods—by population subgroup and by factor source—
can be shown to be related to each other. This can be conveniently done using the
model that we have just introduced.

4 Decomposition by factor source

Equation 2 is analogous to the case analysed by Shorrocks [34] where income is
the sum of income components (such as labour income, transfers and so on). The
inequality of total income, I(Y), can be written using a natural decomposition rule
such as:

I(Y) =
K+1∑

k=1

�k (6)

2Actually in some situations this might be regarded as a shortcoming, especially when the change of
inequality can have a different sign depending on the inequality measure adopted.
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where �k depends on Ck and can be regarded as the contribution of factor k to
overall income inequality. Define also the proportional contribution of factor k to
inequality

θk := �k

I(Y)
.

Using Eqs. 4 and 5 the results in Shorrocks [34] yield:

θk = σ(Ck, Y)

σ 2(Y)
= σ 2(Ck)

σ 2(Y)
+

K+1∑

j�=k

ρ(Ck, C j)
σ (Ck)σ (C j)

σ 2(Y)
, k = 1, ..., K + 1

where σ(X) := √
var(X), σ(X, Y) := cov(X, Y) and ρ(Ci, C j) := corr(Ci, C j).

Since σ(βk Xk, Y) = βkσ(Xk, Y) we have:

θk = β2
k
σ 2 (Xk)

σ 2(Y)
+

K+1∑

j�=k

βkβ j
σ

(
Xk, X j

)

σ 2(Y)
+ βk

σ (Xk, U)

σ 2(Y)
(7)

from which we obtain

θk = β2
k
σ 2 (Xk)

σ 2(Y)
+

K+1∑

j�=k

βkβ jρ(Xk, X j)
σ (X j)σ (Xk)

σ 2(Y)
+ βkρ(Xk, U)

σ (Xk)σ (U)

σ 2(Y)
, (8)

for k = 1, ..., K and

θK+1 = σ 2(U)

σ 2(Y)
+

K∑

k=1

βkρ(Xk, U)
σ (Xk)σ (U)

σ 2(Y)
. (9)

Replacing βk by its OLS estimate (bk), and variances, covariances and correlation
by their unbiased sample analogues, the estimate of θk, (zk), can be obtained. A
similar approach was followed by Fields [17]. Equations 8 and 9 provide a simple
and intuitive interpretation and allow one to discuss the contribution of the value of
characteristic k, ck, to inequality I(y). If we impose more structure on the problem,
by assuming that there is no multicollinearity among regressors and all regressors are
non-endogenous (corr(C j, Cr) = 0, j �= r and j, r = 1, ..., K, K + 1), then Eq. 7 can be
simplified to

θk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β2
k

σ 2 (Xk)

σ 2(Y)
, k = 1, ..., K

σ 2(U)

σ 2(Y)
, k = K + 1

(10)

and it can be estimated as

zk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b 2
k

σ 2(xk)

σ 2(y)
, k = 1, ..., K

σ 2(u)

σ 2(y)
, k = K + 1

(11)
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where σ 2(xk), σ
2(y), σ 2(u) stand for the unbiased sample variance of xk, y, u, re-

spectively. The sample analogue of the inequality decomposition as in Eq. 6 can be
written as:

I(y) =
K+1∑

k=1

Zk =
K+1∑

k=1

I(y)zk =
K∑

k=1

I(y)b 2
k
σ 2(xk)

σ 2(y)
+ I(y)

σ 2(u)

σ 2(y)
. (12)

With some simplification, the right-hand-side of Eq. 12 might be interpreted as the
sum of the effects of the K characteristics and of the error term, although one should
consider it as the sum of the total value of the K characteristics, i.e. the product of its
“price” of each component as estimated in the income regression (bk, k = 1, ..., K)
and its quantity (xk, k = 1, ..., K). One should also notice that the standard errors of
Eq. 12 are not trivial to compute as they involve the ratio of variances of random
variables coming from a joint distribution and the variance of inequality indices
can be rather cumbersome to derive analytically (see for instance [12]). Simulation
methods such as the bootstrap are suggested for derivation of standard errors of
Eq. 12, although they are not presented for the empirical analysis which follows.

Equation 7 shows that θk (k = 1, ..., K) can only be negative if

βk

(∑
j�=k

β jσ
(
Xk, X j

) + σ (Xk, U)
)

< −β2
kσ 2 (Xk) , k = 1, ...K

for which a necessary condition is that there be either a nonzero correlation among
RHS variables or at least one endogenous RHS variable.

It should be noted here that the decomposition (Eq. 6) applies for natural
decompositions only, i.e., if the LHS variable can be represented as a sum of factors.
In the labour-economics literature it is customary to estimate a log-linear relation,
such as

log(y) = b0 +
K∑

k=1

bkxk + u

based on theoretical models of human capital, arguments of better regression fit, or
error properties. In this case, the decomposition (Eq. 6) can only be undertaken with
I(log(y)) on the LHS.

5 Decomposition by population subgroups

Let us now assume that X1 is a discrete random variable that can take only a finite
number of values { j = 1, ..., t1}. Let Xk, j := ι · Xk, where ι is an indicator function
which is equal to one if X1 = j and is equal to zero otherwise. Equation 2 can be
represented for each sub-group j as:

Yj = β0, j + β1, jX1, j +
K∑

k=2

βk, jXk, j + Uj (13)
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Define Pj = Pr(X1 = X1, j), the proportion of the population for which X1 = X1, j.
Then within-group inequality can be written as

Iw(Y) =
t1∑

j=1

W jI(Yj) , (14)

where t1 is the number of groups considered, W j is a weight that is a function of the
Pj, and Yj. The decomposition by population subgroups allows one to write:

I(Y) = Ib(Y) + Iw(Y), (15)

where Ib is between-group inequality, implicitly defined by Eqs. 14 and 15 as

Ib(Y) := I(Y) −
t1∑

j=1

W jI
(
Yj

)
.

In the case of the Generalised Entropy (GE) indices we have, for any α ∈ (−∞,∞),

W j = Pj

[
μ

(
Yj

)

μ(Y)

]α

= Rα
j P1−α

j , (16)

where R j := Pjμ(Yj)/μ(Y) is the income share of group j, μ(Yj) is mean income for
subgroup j, μ(Y) is mean income for the whole population; we also have

I(Y) = 1

α2 − α

[∫ [
Y

μ(Y)

]α

dF(Y) − 1

]
, (17)

from which we obtain

Iw(Y) = 1

α2 − α

⎡

⎣
t1∑

j=1

Pj

[
μ

(
Yj

)

μ(Y)

]α ∫ [
Yj

μ
(
Yj

)
]α

dF(Yj) − 1

⎤

⎦ (18)

and

Ib(Y) = 1

α2 − α

⎡

⎣
t1∑

j=1

Pj

[
μ

(
Yj

)

μ(Y)

]α

− 1

⎤

⎦ . (19)

Let us now see how decomposition by population subgroups could be adapted
to an approach which uses the estimated DGP. Assuming that all standard OLS
conditions are fulfilled, and using a n−size random sample y, x1, .., xk from the
joint distribution function F(Y, X1, .., Xk) one can estimate Eq. 13 by using dummy
variables for identifying different groups obtaining:

yj = b 0 j +
K∑

k=2

b kjxk, j + uj (20)

where b0, j are OLS estimates of β0, j + β1, jμ(x1, j) in subsample j and uj are the OLS
residuals of each group.

Given the OLS assumptions, the unbiasedness property of OLS estimates allows
one to write the mean of yj in Eq. 20 as μ(yj) = b0, j + ∑K

k=2 bk, jμ(xk, j).
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The estimated between-group inequality Ib can then be written as:

Ib(y) = 1

α2 − α

⎡

⎣
t1∑

j=1

pj

[
b0, j + ∑K

k=2 bkμ(xk, j)

b0 + ∑K
k=1 bkμ(xk)

]α

− 1

⎤

⎦ (21)

where pj := n j/n is the population share and n j is the size of group j. The estimated
within-group inequality, using Eq. 12 to decompose I(yj), is written as:

Iw(y) =
t1∑

j=1

wj I(yj)

(
K∑

k=2

b 2
k, jσ

2(xk, j) + σ 2(uj)

σ 2(yj)

)
(22)

where wj = (q j)
α(pj)

1−α and q j := pjμ(yj)/μ(y) is the income share of group j.
In the general case, allowing for the possibility that corr(X1, j, Xk, j) �= 0 and that

corr(X1, j, U) �= 0, decomposition by subgroups is now:

Ib(y) = 1

α2 − α

⎡

⎣
t1∑

j=1

pj

[
b0, j + ∑K

k=2 bk, jμ(xk, j)

b0 + ∑K
k=1 bkμ(xk)

]α

− 1

⎤

⎦ (23)

where b0, j is now the OLS estimate of β0, j + β1, jμ(x1, j) = β0, j + β1, j · j and

Iw(y) =
t1∑

j=1

wj I(yj)

⎡

⎣

⎛

⎝
K∑

k=2

b 2
k, j

σ 2(xk, j)

σ 2(yj)
+ bk, j

∑

r �=k

br, jρ(xr, j, xk)
σ (xr, j)σ (xk)

σ (yj)

+ bk, jρ(xk, j, uj)
σ (xk, j)σ (uj)

σ (yj)
+ bk, j

σ
(
xk, j, uj

)

σ 2
(
yj

)
)

+ σ 2(uj)

σ 2(yj)

]
.

(24)

Using a similar notation of that introduced in Section 4, we can write I(yj) =∑K+1
k=1 �jk and θjk := �jk/I(yj) and rewrite the within-group inequality as

Iw(y) =
t1∑

j=1

wj

K+1∑

k=1

�jk =
t1∑

j=1

wj

K+1∑

k=1

I(yj)θjk (25)

6 Empirical application

We applied the method outlined above to the Luxembourg Income Study (LIS) data
set,3 focusing on net disposable income for the United States and Finland in the
mid 1980s and in 2004. We chose the United States and Finland as they are two
relevant examples of countries belonging to the group of Anglo-Saxon and Nordic

3Data are available from http://www.lisproject.org/. For a description of the Luxembourg Income
Study, see Gornick and Smeeding [22]. All empirical results can be replicated downloading relevant
files from http://fiorio.economia.unimi.it/ftp/proj/ineqdec/cowell_fiorio.zip. The main results are
obtained using a modification of the Stata routine ineqrbd [19], which can also be downloaded from
Stata typing “ssc install ineqrbd, replace” in the Stata command line.

http://www.lisproject.org/
http://f/iorio.economia.unimi.it/ftp/proj/ineqdec/cowell_f/iorio.zip
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countries, the first being characterised by higher inequality of after-tax income and a
light welfare state, the second being characterised by relatively lower inequality and a
substantial welfare state—see for example Brandolini and Smeeding [6, 7]. We focus
on inequality computed for equivalised income, using the square-root equivalence
scale, so that each individual is given his family’s income normalised by the square
root of the family size.

We use these data also because they allow us to compare the distribution of a
uniformly defined income variable at approximately the same periods. In fact, four
data sets are considered: the United States in 1986 and 2004 and Finland in 1987
and 2004. As Table 1 shows equivalised income inequality in mid 1980s Finland
was between 42 and 69% smaller than that in the US, according to inequality
measures the GE and Gini indices, and between 29 and 59% smaller, using quantile
ratios. Nearly twenty years later, inequality of equivalised income increased in both
countries, especially for incomes in the upper tail of the income distribution, as
GE(2) shows. Although equivalised-income inequality increased relatively more in
Finland, it remained consistently lower in Finland with respect to the US.

We begin by examining the role of two important subgroups, those defined by
sex and by education of the household head, where education is coded into four
categories (less than high school, high school, college and Master/PhD). One way to
investigate these issues is a decomposition by population subgroups of GE indices.
Table 2 presents results by education and by sex subgroups: it first gives the measures
of inequality computed in each subgroup and then shows the within- and between-
subgroup decomposition of inequality for the three GE indices, for United States and
then Finland in each period. Given the exact decomposability property of GE indices,
the sum of the within and between components is equal to total inequality. One might
conclude from Table 2 that, decomposing by education, both the inequality within
educational subgroups and the inequality between groups increased in each country.
In particular, between-group inequality nearly doubled in both countries, while the
trend of within-group inequality was more pronounced in Finland. By contrast, a
decomposition by sex of the household head shows roughly the opposite pattern of
within and between components: while the former clearly increased in both countries

Table 1 Inequality statistics

Equivalised disposable income inequality

United States Finland Finland/US

1986 2004 Change 1987 2004 Change 1986–1987 2004
(%) (%) (%) (%)

p90/p10 5.778 5.380 −7 2.375 2.775 17 −59 −48
p90/p50 2.076 2.080 0 1.482 1.636 10 −29 −21
p50/p10 2.786 2.584 −7 1.603 1.698 6 −42 −34
p75/p25 2.406 2.402 0 1.557 1.687 8 −35 −30
GE(0) 0.212 0.256 21 0.066 0.101 54 −69 −60
GE(1) 0.183 0.244 33 0.063 0.124 96 −65 −49
GE(2) 0.199 0.350 76 0.070 0.315 347 −65 −10
Gini 0.335 0.365 9 0.193 0.240 24 −42 −34

Note: p90 stands for the 90th percentile of the income distribution and similarly, p10, p50, p75
and p25



520 F.A. Cowell, C.V. Fiorio

T
ab

le
2

Su
bg

ro
up

in
eq

ua
lit

y
de

co
m

po
si

ti
on

by
ed

uc
at

io
na

la
tt

ai
nm

en
ta

nd
by

se
x

of
th

e
ho

us
eh

ol
de

r

U
ni

te
d

St
at

es
F

in
la

nd

19
86

20
04

19
87

20
04

G
E

(0
)

G
E

(1
)

G
E

(2
)

G
E

(0
)

G
E

(1
)

G
E

(2
)

G
E

(0
)

G
E

(1
)

G
E

(2
)

G
E

(0
)

G
E

(1
)

G
E

(2
)

Su
bg

ro
up

s
by

ed
uc

at
io

n
<

H
ig

h
sc

ho
ol

0.
22

2
0.

20
3

0.
23

0
0.

22
3

0.
21

0
0.

30
8

0.
06

2
0.

05
9

0.
06

1
0.

09
2

0.
09

9
0.

13
1

H
ig

h
sc

ho
ol

0.
17

7
0.

15
0

0.
15

6
0.

21
0

0.
19

2
0.

26
2

0.
05

8
0.

05
5

0.
06

1
0.

07
5

0.
08

2
0.

19
3

C
ol

le
ge

0.
13

5
0.

12
7

0.
14

4
0.

18
5

0.
18

2
0.

24
8

0.
05

1
0.

05
1

0.
06

3
0.

10
2

0.
14

4
0.

42
4

M
as

te
r/

P
hD

0.
14

4
0.

12
2

0.
12

4
0.

21
7

0.
22

2
0.

30
6

0.
04

5
0.

04
6

0.
04

8
0.

08
5

0.
09

4
0.

12
1

W
it

hi
n

0.
17

9
0.

15
0

0.
16

5
0.

20
6

0.
19

5
0.

29
8

0.
05

9
0.

05
6

0.
06

2
0.

08
8

0.
11

0
0.

30
0

B
et

w
ee

n
0.

03
3

0.
03

3
0.

03
4

0.
05

0
0.

05
0

0.
05

2
0.

00
7

0.
00

7
0.

00
8

0.
01

3
0.

01
4

0.
01

4

Su
bg

ro
up

s
by

se
x

M
al

e
0.

18
3

0.
16

2
0.

17
6

0.
22

6
0.

22
5

0.
32

3
0.

06
2

0.
06

0
0.

06
6

0.
09

5
0.

11
6

0.
29

4
F

em
al

e
0.

27
0

0.
24

6
0.

29
0

0.
28

3
0.

26
3

0.
37

7
0.

07
8

0.
07

9
0.

09
3

0.
11

2
0.

14
1

0.
36

9

W
it

hi
n

0.
19

7
0.

17
0

0.
18

7
0.

25
2

0.
24

1
0.

34
6

0.
06

3
0.

06
1

0.
06

8
0.

10
0

0.
12

2
0.

31
3

B
et

w
ee

n
0.

01
5

0.
01

3
0.

01
2

0.
00

4
0.

00
3

0.
00

3
0.

00
3

0.
00

3
0.

00
2

0.
00

2
0.

00
2

0.
00

2



Inequality decompositions—a reconciliation 521

Table 3 Factor source decomposition of the within-group component of inequality of equivalised
income in the United States using a decomposition by educational attainment

GE(0) GE(1) GE(2) Factor source
decomposition of
within inequality (%)

1986 2004 1986 2004 1986 2004 1986 2004

Total inequality 0.212 0.256 0.183 0.244 0.199 0.350
Between inequality 0.033 0.050 0.033 0.050 0.034 0.052
Less than high school

Number of earners 0.008 0.007 0.005 0.004 0.004 0.003 14.189 17.912
Num. children < 18 0.006 0.001 0.004 0.001 0.003 0.001 11.053 3.709
Housing rented 0.002 0.001 0.001 0.001 0.001 0.000 4.277 2.712
Age 0.004 0.001 0.003 0.000 0.002 0.000 7.364 1.443
Age squared −0.002 0.000 −0.002 0.000 −0.001 0.000 −4.461 −0.791
Female 0.002 0.000 0.001 0.000 0.001 0.000 3.319 0.526
Residual 0.035 0.028 0.022 0.015 0.017 0.012 64.259 74.490

High school
Number of earners 0.008 0.008 0.007 0.007 0.007 0.008 8.844 8.294
Num. children < 18 0.013 0.004 0.010 0.003 0.010 0.004 13.804 3.752
Housing rented 0.004 0.004 0.003 0.003 0.003 0.004 4.127 3.915
Age 0.011 0.006 0.009 0.005 0.009 0.006 12.356 6.051
Age squared −0.008 −0.004 −0.006 −0.003 −0.006 −0.004 −8.718 −4.191
Female 0.003 0.000 0.003 0.000 0.003 0.000 3.611 0.299
Residual 0.060 0.082 0.049 0.066 0.049 0.079 65.977 81.878

College
Number of earners 0.000 0.001 0.000 0.001 0.000 0.002 1.201 2.132
Num. children < 18 0.003 0.001 0.003 0.002 0.005 0.003 14.748 2.914
Housing rented 0.000 0.001 0.000 0.002 0.001 0.003 1.530 2.550
Age 0.003 0.003 0.004 0.003 0.005 0.006 15.369 5.668
Age squared −0.002 −0.002 −0.003 −0.003 −0.004 −0.004 −13.267 −4.299
Female 0.000 0.000 0.000 0.000 0.000 0.000 1.339 0.207
Residual 0.015 0.044 0.018 0.054 0.027 0.091 79.080 90.828

Master/PhD
Number of earners 0.001 0.000 0.001 0.000 0.001 0.001 3.539 0.770
Num. children < 18 0.002 0.000 0.003 0.001 0.005 0.001 14.908 1.595
Housing rented 0.001 0.000 0.001 0.001 0.001 0.001 3.717 1.498
Age 0.002 0.001 0.003 0.001 0.005 0.003 15.852 3.315
Age squared −0.002 0.000 −0.002 −0.001 −0.004 −0.001 −12.578 −1.727
Female 0.000 0.000 0.000 0.000 0.001 0.000 2.212 0.269
Residual 0.011 0.019 0.014 0.033 0.022 0.080 72.350 94.280

the latter was roughly stable in absolute value in Finland and clearly decreasing in
the United States.4

What emerges from this decomposition is that most of the inequality is due to the
within component of inequality, but we do not know much about the role of other

4A careful analysis of these inequality statistics should also assess the magnitude of the sampling
error [12], however in this paper we use the empirical application as an illustration of the method-
ologies presented in the previous sections. Further discussions about confidence intervals estimation
of inequality measures and its decompositions will be presented in Section 7.
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household characteristics. From this analysis one cannot disentangle the changed
contribution of a demographic characteristic of the population (e.g., education) while
controlling for the other (e.g., sex). A possible solution would be to create a finer
partition of the sample by interacting education and sex, as proposed in Cowell
and Jenkins [13]. However, this method could become cumbersome if one wanted
to control for some additional characteristics (e.g., ethnicity, area of residence),
would need a discretisation of variables which might reasonably be considered as
continuous (e.g., age) and would reduce the sample size in each subgroup, hence the
precision of the estimate.

Table 4 Factor source decomposition of the within-group component of inequality of equivalised
income in Finland using a decomposition by educational attainment

GE(0) GE(1) GE(2) Factor source
decomposition of
within inequality (%)

1986 2004 1986 2004 1986 2004 1986 2004

Total inequality 0.066 0.101 0.063 0.124 0.070 0.315
Between inequality 0.007 0.013 0.007 0.014 0.008 0.014
Less than high school

Number of earners 0.005 0.003 0.004 0.002 0.004 0.003 17.992 13.753
Num. children < 18 0.001 0.000 0.001 0.000 0.001 0.000 4.354 1.538
Housing rented 0.000 0.001 0.000 0.001 0.000 0.001 0.713 3.194
Age −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −4.236 −4.186
Age squared 0.002 0.002 0.002 0.001 0.002 0.002 7.354 7.737
Female 0.001 0.000 0.001 0.000 0.001 0.000 2.420 1.595
Residual 0.020 0.015 0.017 0.013 0.016 0.015 71.403 76.369

High school
Number of earners 0.002 0.001 0.002 0.001 0.002 0.003 8.557 4.382
Num. children < 18 0.001 0.001 0.001 0.001 0.002 0.001 5.873 1.979
Housing rented 0.001 0.001 0.001 0.001 0.001 0.001 3.008 1.907
Age 0.003 0.002 0.003 0.002 0.003 0.003 10.671 4.725
Age squared −0.002 −0.001 −0.002 −0.001 −0.002 −0.002 −7.746 −3.403
Female 0.001 0.000 0.001 0.000 0.001 0.001 2.267 1.206
Residual 0.019 0.029 0.018 0.029 0.020 0.061 77.369 89.205

College
Number of earners 0.000 0.000 0.000 0.000 0.000 0.002 0.957 0.844
Num. children < 18 0.000 0.001 0.000 0.001 0.001 0.005 5.871 2.364
Housing rented 0.000 0.000 0.000 0.000 0.000 0.001 2.132 0.393
Age 0.001 0.000 0.001 0.001 0.002 0.002 14.348 0.889
Age squared −0.001 0.000 −0.001 0.000 −0.001 −0.001 −10.601 −0.667
Female 0.000 0.000 0.000 0.000 0.000 0.001 1.511 0.286
Residual 0.005 0.033 0.007 0.056 0.011 0.200 85.783 95.892

Master/PhD
Number of earners 0.000 0.000 0.000 0.000 0.000 0.000 4.909 0.919
Num. children < 18 0.000 0.000 0.000 0.000 0.000 0.000 17.572 5.114
Housing rented 0.000 0.000 0.000 0.000 0.000 0.000 0.446 1.534
Age 0.000 0.000 0.000 0.000 0.000 −0.001 8.858 −12.044
Age squared 0.000 0.000 0.000 0.000 0.000 0.001 −1.908 19.319
Female 0.000 0.000 0.000 0.000 0.000 0.000 0.251 0.254
Residual 0.000 0.001 0.000 0.002 0.001 0.004 69.873 84.904
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Table 5 Factor source decomposition of thewithin-group component of inequality of equivalised
income in the United States using a decomposition by gender

GE(0) GE(1) GE(2) Factor source
decomposition of
within inequality (%)

1986 2004 1986 2004 1986 2004 1986 2004

Total inequality 0.212 0.256 0.183 0.244 0.199 0.350
Between inequality 0.015 0.004 0.013 0.003 0.012 0.003
Male

Num. of earners 0.009 0.004 0.009 0.004 0.010 0.006 5.834 3.136
Num. < 18 0.019 0.003 0.018 0.004 0.021 0.006 12.273 2.739
Housing rented 0.005 0.003 0.004 0.003 0.005 0.005 2.971 2.248
Age 0.014 0.005 0.013 0.005 0.015 0.008 8.937 4.160
Age squared −0.010 −0.003 −0.009 −0.004 −0.011 −0.006 −6.231 −2.810
High school −0.002 −0.002 −0.002 −0.002 −0.002 −0.004 −1.426 −1.883
College 0.007 0.005 0.006 0.005 0.007 0.008 4.372 3.960
Master/PhD 0.016 0.013 0.015 0.014 0.017 0.021 10.263 10.659
Residual 0.098 0.095 0.092 0.101 0.107 0.157 63.008 77.791

Female
Num. of earners 0.005 0.008 0.003 0.007 0.002 0.009 11.725 6.019
Num. < 18 0.004 0.003 0.002 0.003 0.002 0.004 10.337 2.671
Housing rented 0.001 0.006 0.001 0.005 0.001 0.006 3.405 4.313
Age 0.001 0.005 0.001 0.004 0.000 0.006 2.800 3.814
Age squared 0.000 −0.003 0.000 −0.002 0.000 −0.003 −0.762 −2.250
High school 0.000 −0.002 0.000 −0.001 0.000 −0.002 0.610 −1.288
College 0.002 0.007 0.001 0.006 0.001 0.007 5.951 5.104
Master/PhD 0.002 0.009 0.001 0.008 0.001 0.010 4.797 7.045
Residual 0.025 0.097 0.015 0.083 0.011 0.108 61.138 74.572

What additional insights might a regression-based approach yield? By applying a
regression-based factor-source decomposition as discussed in Section 5, we can assess
the contribution of (the total value of) each right-hand-side variable to inequality.
Our factor-source decomposition of within-group inequality allows us to assess
whether one variable contributes uniformly to inequality in each subgroup or has
a disproportionate effect across the subgroups. We estimate separate regressions for
each subgroup as in Eq. 20 where yj is the vector of household equivalised incomes of
households in group j and as covariates we used, for both countries in both periods,
family variables (number of earners, number of children under age 18, whether the
family rents or owns its own dwelling) and variables referring to the household head
only (age, age squared, sex and four category dummies for education).5 Clearly this
is not a structural model and its specification is unsuitable for a causal interpretation.
We deliberately adopted a parsimonious specification, but it is informative about the
correlation of some key variables with equivalised household income.

5This is a clearly simplified model of equivalised income generation, however available data would
not allow the development of a more complex structural model of household income. For further
discussion of this issue, see Section 7.
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Table 6 Factor source decomposition of the within-group component of inequality of equivalised
income in Finland using a decomposition by gender

GE(0) GE(1) GE(2) Factor source
decomposition of
within inequality (%)

1986 2004 1986 2004 1986 2004 1986 2004

Total inequality 0.066 0.101 0.063 0.124 0.070 0.315
Between inequality 0.003 0.002 0.003 0.002 0.002 0.002
Male

Num. of earners 0.003 0.002 0.004 0.002 0.004 0.005 8.005 2.372
Num. < 18 0.002 0.001 0.003 0.002 0.003 0.005 5.050 2.108
Housing rented 0.001 0.001 0.001 0.001 0.001 0.003 1.368 1.195
Age 0.001 0.002 0.002 0.002 0.002 0.006 2.996 2.466
Age squared −0.001 −0.001 −0.001 −0.001 −0.001 −0.003 −1.183 −1.439
High school 0.000 0.000 0.000 0.000 0.000 −0.001 −0.461 −0.283
College 0.005 0.002 0.006 0.003 0.005 0.007 10.458 3.141
Master/PhD 0.001 0.001 0.001 0.001 0.001 0.002 1.418 0.875
Residual 0.032 0.060 0.040 0.076 0.037 0.201 72.349 89.566

Female
Num. of earners 0.003 0.001 0.001 0.001 0.003 0.003 14.199 3.358
Num. < 18 0.000 0.000 0.000 0.000 0.000 0.001 −0.111 0.729
Housing rented 0.001 0.000 0.000 0.000 0.001 0.001 2.602 0.622
Age −0.002 0.000 0.000 0.000 −0.002 0.000 −7.151 −0.345
Age squared 0.003 0.000 0.001 0.000 0.003 0.001 13.315 0.845
High school 0.000 0.000 0.000 0.000 0.000 0.000 −0.043 −0.011
College 0.002 0.001 0.001 0.001 0.002 0.003 9.694 3.809
Master/PhD 0.000 0.000 0.000 0.000 0.000 0.001 0.253 1.247
Residual 0.015 0.029 0.004 0.033 0.015 0.079 67.243 89.745

Inequality decomposition estimates are presented for education subgroups in
Tables 3 and 4, and for gender subgroups in Tables 5 and 6.6 All these tables have
the same structure: the first line reports the total inequality using GE(0), GE(1)
and GE(2) for each of the two years considered and the second line reports the
between inequality. In the following lines a decomposition of within-group inequality
is provided, accounting for the contribution of each covariate in each subgroup
to within-group inequality. The contribution of each covariate in each subgroup is
obtained as in Eq. 25, by multiplying the factor-source decomposition of inequality
in each group (I(yj)) by its weight (wj). The factor-source decomposition of the
inequality in each subgroup is reported in percentage terms in the last two column
for each of the years considered. As this inequality decomposition enjoys the same
properties as the factor-source decomposition suggested in Shorrocks [34], namely
the fact that it is invariant to the inequality measure used, we used these factors to
decompose the within components of the GE(0), GE(1) and GE(2).

Table 3 shows that in the US female-headed households and households with
young children accounted for a decreasing share of within-group inequality, while
the number of earners in the household accounted for a relatively stable share of

6Tables of results are presented omitting the OLS coefficient estimates and their significance, which
could however be obtained from the authors upon request.
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within-group inequality. This decomposition shows that the largest contribution to
within-group inequality is due to the number of earners and the number of children
younger than 18 and that the rented household accounts for a relatively large share
of inequality in the high school educated household, while it is less important in the
less and the most educated households. In Finland the number of young children is
much less relevant to account for within-group inequality except for the group of
college educated households, possibly due to a larger welfare system. The negligible
contribution to within-group inequality of the most educated group reflects the
relatively small share of population in this groups (less than 1.3% in 2004) and shows
that within-group inequality is mostly due to the group of high school or less educated
households (Table 4).

Looking at gender subgroups, Table 5 shows that the large increase of within-
group inequality in the US as measured by the GE(2) index between the two years
considered is accounted for by the female subgroup and in particular by the number
of earners, the number of young children and by high level of education. This trend
is instead much less evident in Finland (Table 6).

Finally, it should be pointed out that the proposed inequality decomposition is
exact only if the contribution of the residual is not ignored. Indeed, Tables 3–6 show
that, after controlling for a set of individual and family characteristics, the residual
within each subgroup still accounts for a proportion between 61% and 94% of total
inequality within subgroups and that the residual accounts for an increasing share
of within-group inequality over time. This suggests that a simple linear model such
as the one we have suggested for illustrative purposes should be enriched either by
including more controls, when available, or by specifying a richer model.

7 Discussion

Clearly any empirical methodology should come with a set of warnings about
implementation: so too with the techniques illustrated in Section 6.

First, although the computation of standard errors is sometimes treated as a trivial
problem (as in Morduch and Sicular [27]), this is not so; the main reason for the
complexity is that the inequality index computed from a random sample is itself a
random variable and cannot be treated as deterministic in the calculation of standard
errors (see Section 4); moreover, I(y) often appears at the denominator of these
decompositions making theoretical computation of standard errors cumbersome. A
viable way to assess the robustness of estimates is to provide different specifications
of the regression models, assessing the effects of the inclusion or exclusions of some
independent variables and the significance of results could be assessed by computing
standard errors using the bootstrap.

Second, a single-equation model, such as that developed above, should only
be interpreted as a descriptive model, showing correlations rather than causal
relationships. Could we have done better by opting for a richer model such as the
Bourguignon et al. [4, 5] simultaneous-equation extension of the Blinder-Oaxaca
decomposition? Their interest is in the change across time of the full distribution
of income and related statistics. The components of their model are an earnings
equation for each household member (linking individual characteristics to their re-
muneration), a labour supply equation (modelling the decision of the individual and
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of other household’s members) and a household income equation (aggregating the
individuals’ contributions to household income formation). The estimation of such
an econometric model at two different dates allows one to disentangle: (i) a “price
effect” (people with given characteristics and the same occupation get a different in-
come because the remuneration structure has changed) (ii) a “participation” or “oc-
cupation effect” (individuals with given characteristics do not make the same choices
as for entering the labour force because their household may have changed) and
(iii) a “population effect” (individual and household incomes change because socio-
demographic characteristics of population of households and individuals change).
The main merit of such an approach is that it builds a comprehensive model of how
decisions regarding income formation are taken, including the individual decision of
entering the labour force and wage formation mechanism, into a household-based
decision process, extracting part of the information left in the residuals of single-
equation linear models as the one used in this paper. Bourguignon et al. [5] used this
methodology to argue persuasively that the apparent stability of Taiwan’s income
inequality was just due to the offsetting of different forces. However, the rich struc-
tural model comes at the expense of increasing the complication of the estimation
process and of introducing additional and perhaps questionable assumptions. Among
the most important limitations of the Bourguignon et al. approach are: the robustness
of the estimates of some coefficients, the problem of simultaneity between household
members’ labour-supply decisions, the issue of understanding what is left in the
residuals of the labour supply equations and the counterfactual wage equations,
the path-dependence problem (i.e., which counterfactual is computed first) is also
a problem.7 In sum, the full structural model approach for inequality analysis can be
cumbersome and is likely to be sensitive to model specification.

8 Conclusion

At the beginning we raised the question of whether the main approaches to in-
equality decomposition were on speaking terms. The a priori approach and the
regression-model approach outlined in Section 2 might appear at first glance to
be incompatible. However, they can be made to “talk to each other.” The key to
the translation lies in an appropriate application and interpretation of the factor-
source decomposition method. Our approach to reconciling the different strands of
inequality-decomposition analysis is based on a single-equation regression, builds on
the Shorrocks [34] methodology and is aimed at providing a tool for understanding
inequality, especially when the data are not sufficiently detailed to allow a structural
model specification. It shares some features with the approach suggested by Fields
[17],8 but improves on it by including in the analysis the decomposition by subgroups
and in showing how this might also be useful to identify differences in determinants
of inequality.

7To get some idea of the magnitude of the path-dependence problem the authors computed all
possible evaluations of price, participation and population effects, although the complex problem
of computing proper confidence intervals for the structural model is not tackled. The problem has
something in common with that of the Shapley-value method discussed in Section 2.1.
8See also Fields and Yoo [18] and Morduch and Sicular [27].
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Our approach is fairly robust, providing an improvement on other methods;
it also provides results consistent with other decomposition methods. The simple
specification makes no claims about causality but enables one to distinguish clearly
between methods of accounting for inequality that rely solely on a breakdown of the
factors that underlie predicted income and the breakdown of inequality of observed
income.
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