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Abstract

This paper studies the distribution of the classical t-ratio with data generated
from distributions with no finite moments and shows how classical testing is af-
fected by bimodality. A key condition in generating bimodality is independence
of the observations in the underlying data generating process (DGP). The paper
highlights the strikingly different implications of lack of correlation versus statisti-
cal independence in DGPs with infinite moments and shows how standard inference
can be invalidated in such cases, thereby pointing to the need for adapting estima-
tion and inference procedures to the special problems induced by thick-tailed (TT)
distributions.

The paper presents theoretical results for the Cauchy case and develops a new
distribution termed the “double Pareto,” which allows the thickness of the tails
and the existence of moments to be determined parametrically. It also investigates
the relative importance of tail thickness in case of finite moments by using TT
distributions truncated on a compact support, showing that bimodality can persist
even in such cases. Simulation results highlight the dangers of relying on naive
testing in the face of TT distributions. Novel density estimation kernel methods
are employed, given that our theoretical results yield cases that exhibit density
discontinuities.
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1 Introduction

Many economic phenomena are known to follow distributions with non-negligible
probability of extreme events, termed thick tailed (TT) distributions. Top income
and wealth distributions are often modelled with infinite variance Pareto distribu-
tions (see among others Cowell, 1995). The distribution of cities by size seems
to fit Zipf’s law, a discrete form of a Pareto distribution with infinite variance
(Gabaix, 1999). Another example is the size distribution of firms (Hart and Prais,
1956; Steindl, 1965). Further, TT distributions frequently arise in financial return
data and data on corporate bankruptcies, which can cause difficulties in regulating
markets where such extremes are observed (Embrechts, 2001; Loretan and Phillips,
1994). A final example arises in the economics of information technology where Web
traffic file sizes follow distributions that decline according to a power law (Arlitt and
Williamson, 1996), often with infinite variance (Crovella and Bestavros, 1997).

Although there is a large and growing literature on robust estimation with
data following thick tail distributions (e.g., Dupuis and Victoria-Feser (2006); Hsieh
(1999); Beirlant et al. (1996)), little is known about the consequences of performing
classical inference using samples drawn from such distributions. Important excep-
tions are Logan et al. (1972), which drew early attention to the possibility of bimodal
distributions in self normalized sums of independent random variables, Marsaglia
(1965) and Zellner (1976, 1978), who showed bimodality for certain ratios of normal
variables, Phillips and Wickens (1978), who showed that the distribution of struc-
tural equation estimators was not always unimodal, and Phillips and Hajivassiliou
(1987), who analyzed bimodality in classical t-ratios. Nelson and Startz (1990) and
Maddala and Jeong (1992) provided some further analysis of structural estimators
with possibly weak instruments. More recent contributions include Woglom (2001),
Hillier (2006), Forchini (2006), and Phillips (2006), who all consider bimodality in
structural equation distributions. Not much emphasis in this literature has been
placed on the difference between orthogonal and fully independent observations.

The present paper contributes to this literature in several ways. It provides an
analysis of the asymptotic distribution of the classical t-ratio for distributions with
no finite variance and discusses how classical testing is affected. In Section 2 we
clarify the concept of TT distributions and provide a theoretical analysis of the
bimodality of the t-ratio with data from an iid Cauchy distribution. A simulation
analysis of this case is given in Section 3. Novel density estimation kernel methods
are employed, given that our theoretical results yield cases that exhibit density
discontinuities. Section 4 considers the different implications of lack of correlation
and statistical independence. Section 5 illustrates extensions to other distributions
with heavy tails: the Stable family of distributions (subsection 5.1) and a symmetric
double Pareto distribution (subsection 5.2), which allows tail thickness and existence
of moments to be determined parametrically. Section 6 investigates inference in the
context of t-ratios with TT distributions. Section 7 shows that bimodality can arise
even with TT distributions trimmed to have finite support. Section 8 concludes.

2 Cauchy DGPs and Bimodality of the t-statistic

While there is no universally accepted definition of a TT distribution, random vari-
ables drawn from a TT distribution have a non negligible probability of assuming
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very large values. Distribution functions with infinite first moments certainly be-
long to the family of thick tail (TT) distributions. Different TT distributions have
differing degrees of thick-tailedness and, accordingly, quantitative indicators have
been developed to evaluate the probability of extremal events, such as the extremal
claim index to assign weights to the tails and thus the probability of extremal events
(Embrechts et al., 1999). A crude though widely used definition describes any distri-
bution with infinite variance as a TT distribution. Other weaker definitions require
the kurtosis coefficient to larger than 3 (leptokurtic) (Bryson, 1982).

In this paper we say that a distribution is thick-tailed (TT) if it belongs to
the class of distributions for which Pr(|X| > c) = c−α and α ≤ 1. The Cauchy
distribution corresponds to the boundary case where α = 1. Such distributions are
sometimes called very heavy tailed.

It is well known that ratios of random variables frequently give rise to bimodal
distributions. Perhaps the simplest example is the ratio R = a+x

b+y
where x and y

are independent N(0, 1) variates and a and b are constants. The distribution of R
was found by Fieller (1932) and its density may be represented in series form in
terms of a confluent hypergeometric function [see (Phillips, 1982)][equation (3.35)].
It turns out, however, that the mathematical form of the density of R is not the most
helpful instrument in analyzing or explaining the bimodality of the distribution that
occurs for various combinations of the parameters (a, b). Instead, the joint normal
distribution of the numerator and denominator statistics, (a + x, b + y) provides
the most convenient and direct source of information about the bimodality. An
interesting numerical analysis of situations where bimodality arises in this example
is given by Marsaglia (1965), who shows that the density of R is unimodal or bimodal
according to the region of the plane in which the mean (a, b) of the joint distribution
lies. Thus, when (a, b) lies in the positive quadrant the distribution is bimodal
whenever a is large (essentially a > 2.257 ).

Similar examples arise with simple posterior densities in Bayesian analysis and
certain structural equation estimators in econometric models of simultaneous equa-
tions. Zellner (1978) provides an interesting example of the former, involving the
posterior density of the reciprocal of a mean with a diffuse prior. An important
example of the latter is the simple indirect least squares estimator in just identified
structural equations as studied, for instance, by Bergstrom (1962) and recently by
Hillier (2006), Forchini (2006), and Phillips (2006).

The present paper shows that the phenomenon of bimodality can also occur with
the classical t-ratio test statistic for populations with undefined second moments.
The case of primary interest to us in this paper is the standard Cauchy (0,1) with
density

pdf(x) =
1

π(1 + x2)
(1)

When the t-ratio test statistic is constructed from a random sample of n draws from
this population, the distribution is bimodal even in the limit as n →∞. This case
of a Cauchy (0,1) population is especially important because it highlights the effects
of statistical dependence in multivariate spherical populations. To explain why this
is so, suppose (X1, · · · , Xn) is multivariate Cauchy with density

pdf(x) =
Γ
(
n+1

2

)
π(n+1)/2(1 + x′x)(n+1)/2

(2)
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This distribution belongs to the multivariate spherical family and may be written
in terms of a variance mixture of a multivariate N(0, σ2In) as∫ ∞

0

N(0, σ2In)dG(σ2) (3)

where 1/σ2 is distributed as χ2
1 and G(σ2) is the distribution function of σ2. Note

that the marginal distributions of (2) are all Cauchy. In particular, the distribution
of Xi is univariate Cauchy with density as in (1) for each i. However, the components
of (X1, · · · , Xn) are statistically dependent, in contrast to the case of a random
sample from a Cauchy (0,1) population. The effect of this dependence, which is what
distinguishes (2) from the random sample Cauchy case, is dramatically illustrated
by the distribution of the classical t-statistic:

tX =
X

SX
=

n−1Σn
1Xi

{n−2Σn
1 (Xi −X)2}1/2

(4)

Under (2), tX is distributed as t with n − 1 degrees of freedom, just as in the
classical case of a random sample from a N(0, σ2) population. This was pointed
out by Zellner (1976) and is an immediate consequence of (3) and the fact that tX
is scale invariant.4 However, the spherical assumption that underlies (2) and (3)
and the dependence that it induces in the sample (X1, · · · , Xn) is very restrictive.
When it is removed and (X1, · · · , Xn) comprise a random sample from a Cauchy
(0, 1) population, the distribution of tX is very different. The new distribution
has symmetric density about the origin but with distinct modes around ±1. This
bimodality persists even in the limiting distribution of tX so that both asymptotic
and small sample theory are quite different from the classical case.

In the classical t-ratio the numerator and denominator statistics are indepen-
dent. Moreover, as n → ∞ the denominator, upon suitable scaling, converges in
probability to a constant. By contrast, in the i.i.d. Cauchy case the numerator and
denominator statistics of tX converge weakly to non-degenerate random variables
which are (non-linearly) dependent, so that as n → ∞ the t-statistic is a ratio
of random variables. Moreover, it is the dependence between the numerator and
denominator statistics (even in the limit) which induces the bimodality in the dis-
tribution. These differences are important and, as we will prove below, they explain
the contrasting shapes of the distributions in the two cases.

We will use the symbol “⇒” to signify weak convergence as n → ∞ and the
symbol “≡” to signify equality in distribution.

Recalling that for an i.i.d. sample from a Cauchy (0, 1) distribution, the sample
mean X̄ ≡Cauchy (0,1) for all n, and, of course, X → X ≡Cauchy (0,1) as n→∞,
the following theorem will focus on the distribution of (X̄, SX) and that of the
associated t-ratio statistic.

Theorem 1. Let (X1, · · · , Xn) be a random sample from a Cauchy (0,1) distribution

with density (2). Define

S2 = n−2Σn
1X

2
i (5)

4This fact may be traced back to original geometric proofs by Fieller (1932).
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t =
X

S
(6)

Then:

(a)

S2 ⇒ Y

where Y is a stable random variate with exponent α = 1/2 and characteristic func-

tion given by

cfY (v) = E(eivY ) = exp

{
− 2

π1/2
cos
(π

4

)
|v|1/2

[
1− isgn(v)tan

(π
4

)]}
(7)

(b)

(X,S2)⇒ (X, Y )

where (X, Y ) are jointly stable variates with characteristic function given

cfX,Y = exp

{
−2π−1/2(−iv)−1/2

1F1

(
−1

2
,
1

2
;u2/4iv

)}
(8)

where 1F1 denotes the confluent hypergeometric function. An equivalent form is

cfX,Y (u, v) = exp
{
−|u| − π−1/2e−iu

2/4vΨ(3/2, 3/2; iu2/4v)
}

(9)

where Ψ denotes the confluent hypergeometric function of the second kind.

(c)

S2 − S2
X = Op(n

−1) (10)

t− tX = Op(n
−1) (11)

(d) The probability density of the t-ratio (6) is bimodal, with infinite poles at ±1.

Proof. See Appendix A.

Theorem 1 establishes the joint distribution of (X̄, S2) and shows that the dis-
tributions of t and tX , and of S and SX are respectively asymptotically equivalent.5

5For the definition of the hypergeometric functions that appear in (8) and (9) see Lebedev
(1972, Ch. 9). Note that when u = 0 (8) reduces to

exp
{
−2π−1/2(−iv)1/2

}
(12)

We now write −iv in polar form as

−iv = |v|e−isgn(v)π/2

so that
(−iv)1/2 = |v|1/2e−isgn(v)π/4 = |v|1/2cos(π/4) (1− isgn(v)tan(π/4)) (13)

from which it is apparent that (8) reduces to the marginal characteristic function of the stable
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Note that X2
i has density

pdf(y) =
1

πy1/2(1 + y)
, y > 0 (14)

In fact, X2
i belongs to the domain of attraction of a stable law with exponent

α = 1/2. To see this, we need only verify (Feller, 1971, p. 313) that if F (y) is the
distribution function of X2

i then

1− F (y) + F (−y) ∼ 2/πy1/2, y →∞

which is immediate from (14); and that the tails are well balanced. Here we have:

1− F (y)

1− F (y) + F (−y)
→ 1,

F (−y)

1− F (y) + F (−y)
→ 0

Note also that the characteristic function of the limiting variate Y given by (7)
belongs to the general stable family, whose characteristic function (see Ibragimov
and Linnik (1971)][p.43]) has the following form:

ϕ(v) = exp
{
iγv − c|v|α

[
1− iβsgn(v)tan

(πα
2

)]}
(15)

In the case of (7) the exponent parameter α = 1/2, the location parameter γ = 0, the
scale parameter c = 2π−1/2cos(π/4) and the symmetry parameter β = 1. Part (a)
of Theorem 1 shows that the denominator of the t ratio (6) is the square root of
a stable random variate in the limit as n → ∞. This is to be contrasted with the
classical case where nS2

X →
p
σ2 = E(X2

i ) under general conditions.

Note that when n = 1, the numerator and denominator of t are identical up
to sign. In this case we have t = ±1 and the distribution assigns probability mass
of 1/2 at +1 and -1. When n > 1 the numerator and denominator statistics of t
continue to be statistically dependent. This dependence persists as n→∞.

Figures 1a-d show Monte Carlo estimates (by smoothed kernel methods) of the
joint probability surface of (X,S2) for various values of n. As is apparent from the
pictures the density involves a long curving ridge that follows roughly a parabolic
shape in the (X,S2) plane. OLS estimates of the ridge in the joint pdf stabilize
quickly as a function of n and confirm the dependence between X and S2 for the
Cauchy DGP.

Further note that the ridge in the joint density is symmetric about the S2 axis.
The ridge is associated with clusters of probability mass for various values of S2 on
either side of the S2 axis and equidistant from it. These clusters of mass along the
ridge produce a clear bimodality in the conditional distribution of X̄ given S2 for
all moderate to large S2 . For small S2 the probability mass is concentrated in the
vicinity of the origin in view of the dependence between X and S2. The clusters
of probability mass along the ridge in the (X̄, S2) plane are also responsible for the
bimodality in the distribution of certain ratios of the statistics (X,S2) such as the

variate Y given earlier in (7). When v = 0 the representation (9) reduces immediately to the
marginal characteristic function, exp(−|u|), of the Cauchy variate X . In the general case the joint
characteristic function cfXY (u, v) does not factorize and X and Y are dependent stable variates.
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Figure 1: Joint Density Function Estimates of X̄ and S2 for the iid Cauchy DGPs
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t ratio statistics t = X/S and tX = X/SX . These distributions are investigated by
simulation in the following section.

3 Simulation Evidence for the Cauchy Case

The empirical densities reported here were obtained as follows: For a given value
of n, m = 10, 000 random samples of size n were drawn from the standard Cauchy
distribution with density given by (1) and corresponding cumulative distribution
function

F (x) =
1

π
arctan(x) +

1

2
,−∞ < x <∞. (16)

Since (16) has a closed form inverse, the probability integral transform method was
used to generate the draws.

To estimate the probability density functions, conventional kernel methods, e.g.,
Tapia and Thompson (1978), would not provide consistent estimates of the true den-
sity in a neighbourhood of ±1 in view of the infinite singularities (poles) there. An
extensive literature considers how to correct the so-called boundary effect, although
there is no single dominating solution that is appropriate for all shapes of density.6

The method adopted here follows Zhang et al. (1999), which is a combination of
methods of pseudodata, transformation and reflection, is nonnegative anywhere,
and performs well compared to the existing methods for almost all shapes of densi-
ties and especially for densities with substantial mass near the boundary. For the
univariate densities (Figures 2, 4, and 5) a bandwidth of h = 0.2 was used, while for
the bivariate densities in Figure 1, we employed equal bandwidths hx = hy = 0.2.

We investigated the sampling behavior of the t-ratio statistics t and tX , by
combining four kernel densities, two estimating the density on the left of ±1 and
two estimating the density on the right of ±1 using the fact that for x > 1 + h,
x < −1 − h and −1 + h < x < 1 − h the densities estimated with and without
boundary correction coincide (Zhang et al. (1999, p. 1234)). These are shown in
Figure 2. Note that the bimodality is quite striking and persists for all sample sizes.

4 Lack of Correlation versus Independence

Data from an n dimensional spherical population with finite second moments have
zero correlation, but are independent only when normally distributed. The standard
multivariate Cauchy (with density given by (2)) has no finite integer moments but its
spherical characteristic may be interpreted as the natural analogue of uncorrelated
components in multivariate families with thicker tails. When there is only “lack of
correlation” as in the spherical Cauchy case, it is well known (e.g., (King, 1980)) that
the distribution of inferential statistics such as the t-ratio reproduce the behavior
that they have under independent normal draws. When there are independent draws
from a Cauchy population, the statistical behavior of the t-ratio is very different.

6For an introductory discussion of density estimation on bounded support, cf. Silverman (1986,
p. 29). Methods to correct for the boundary problem include the reflection method (Cline and Hart,
1991; Silverman, 1986), the boundary kernel method (Cheng et al., 1997; Jones, 1993; Zhang and
Karunamuni, 1998), the transformation method (Marron and Ruppert, 1994) and the pseudodata
method (Cowling and Hall, 1996).
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(a) Density Function of the t-ratio
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Figure 2: Density Functions for iid Cauchy DGPs
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Examples of this type highlight the statistical implications of the differences between
lack of correlation and independence in nonnormal populations.

(a) Spherical (Dependent) (b) Independent (Nonspherical)

Figure 3: Bivariate Cauchy: Spherical (Dependent) vs. Independent (Nonspherical)

Figure 3 highlights these differences for the bivariate Cauchy case. The left panel
plots the iso-pdf contours of the bivariate spherical Cauchy (with the two observa-
tions being non-linearly dependent), while the right panel gives the contours for
the bivariate independent Cauchy case (where the distribution is non-spherical). In
view of the thick tails, we see the striking divergence between sphericality and sta-
tistical independence: whereas for normal Gaussian distribution, sphericality (=un-
correlatedness) and full statistical independence coincide, we confirm that for non-
Gaussianity, sphericality is neither necessary nor sufficient for independence.7

These results confirm the findings of Hajivassiliou (2008), who emphasized that
when data are generated from distributions with thick tails, independence and zero
correlation are very different properties and can have startlingly different outcomes.
By construction, the random variables in the numerator of the t-ratio, X̄, is linearly
orthogonal to the S2

X variable in the square root of the denominator. Under Gaus-
sianity, this orthogonality implies full statistical independence between numerator
and denominator. But in the case of data drawn from the Cauchy distribution,
statistical independence of the numerator and denominator of the t-ratio rests cru-
cially on whether or not the underlying data are independently drawn: if they are
generated from a multivariate spherical Cauchy (with a diagonal scale matrix) and
hence they are non-linearly dependent, then the numerator and denominator in fact
become independent and the usual unimodal t-distribution obtains. If, on the other
hand, they are drawn fully independently from one another, then X̄ and S2

X turn out
to be dependent and hence the density of the t-ratio exhibits the striking bimodality
documented here.

7Figure 10 of the extended version of this paper, Fiorio et al. (2008) considers 6 representative
squares on the domain of the bivariate Cauchy distributions, and calculates various measures of
deviation from independence for the spherical, dependent version.
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5 Is the Cauchy DGP Necessary for Bimodality?

Our attention has concentrated on the sampling and asymptotic behavior of statis-
tics based on a random sample from an underlying Cauchy (0,1) population. This
has helped to achieve a sharp contrast between our results and those that are known
to apply with Cauchy (0,1) populations under the special type of dependence im-
plied by spherical symmetry. However, many of the qualitative results given here,
such as the bimodality of the t ratios, continue to apply for a much wider class of
underlying populations. In this Section we show that the bimodality of the t-ratio
persists for other heavy-tailed distributions. Two cases are illustrated: (a) draws
from the Stable family of distributions and (b) draws from the “Double-Pareto”
distribution.

5.1 Draws from the Stable Family of Distributions

Let (X1, · · · , Xn) denote a random sample from a symmetric stable population with
characteristic function

cf(s) = e−|s|
α

(17)

and exponent parameter α < 2 then the t-ratios t and tX have bimodal densities
similar in form to those shown in Figure 2 above for the special case α = 1. To
generate random variates characterized by (17) a procedure described in Section 1
of Kanter and Steiger (1974) was used. In our experiments we considered several
examples of stable distributions for various values of a. We found that the bimodality
is accentuated for α < 1 and attenuated as α → 2. When α = 2, of course, the
distribution is classical t with n − 1 degrees of freedom. In a similar vein to the
Cauchy case, we found the ridge in the joint density to be most pronounced for
α = 1/3 but withers as α rises to 5/3. For extended simulation results see Fiorio
et al. (2008).

5.2 Draws from the Double-Pareto Distribution

Analogous to the double-exponential (see, Feller, 1971, p. 49), we define the double
Pareto distribution as the convolution of two independent Pareto (type I) distributed
random variables, X1−X2, whereX1 andX2 have density α1β

α1
1 x−α1−1 (x ≥ β1, α1 >

0, β1 > 0) and α2β
α2
2 (x)−α2−1 (x ≥ β2, α2 > 0, β2 > 0), respectively.8 Its density is∫ ∞
−∞

(α1β
α1
1 )(α2β

α2
2 )(x2 + t)−α1−1(x2)−α2−1dx2

and its first two moments are:9

E(x) =
α1β1(α2 − 1)− α2β2(α1 − 1)

(α1 − 1)(α2 − 1)
with α1 > 1, α2 > 1

V (x) =
α1β

2
1

α1 − 2
− 2α1α2β1β2

(α1 − 1)(α2 − 1)
+

α2β
2
2

α2 − 2
with α1 > 2, α2 > 2

8The name double Pareto was also used by Reed and Jorgensen (2003) for the distribution of a
random variable that is obtained as the ratio of two Pareto random variables and is only defined
over a positive support.

9For derivations, see Appendix B of the extended version of this paper, Fiorio et al. (2008).
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The results that follow were obtained via Monte Carlo simulations from random
samples of dimension n using the method of inverted CDFs, i.e., a random sample
of dimension n is extracted from a unit rectangular variate, U(0, 1), and then it is
mapped into the sample space using the inverse CDF. The number of replications
m was 10,000. This study allows one to disentangle some differences about the
asymptotic distribution of the t-ratio statistic when either one or both first two
moments do not exist.10

The Cauchy and the double Pareto distribution with α1 = α2 ≤ 1 are both
symmetric and have infinite mean. For these distributions, as the sample size in-
creases, the statistic tX converges towards a stable distribution which is symmetric
and bimodal. The convergence is fairly rapid, even for samples as small as 10, and
the two modes are located at ±1. For the double Pareto distribution we find that
the t-ratio distribution does depend on αi, i = 1, 2: the lower is αi, the higher is the
concentration around the two modes (Figure 4(a)).

We also examined the case 1 < α < 2 and found that the t-ratio, tX , is not
always clearly bimodally distributed. The more α departs from 1 the less evident
is the bimodality of the t-ratio density and the clearer the convergence towards a
standard normal distribution (Figure 4(b)). We set β = 3 but these results apply
for any value of β > 0, since β is simply a threshold parameter that does not affect
the tX statistic behavior.11

If α1 6= α2 it suffices to have either α1 ≤ 1 or α2 ≤ 1 for the double Pareto to
have infinite mean. However, in this case the t-ratio distribution does not have a
bimodal density, nor is it stable (see Figure 6 of the extended online version of this
paper, Fiorio et al. (2008)).

The regularity in the tX distribution for the symmetric double Pareto case leads
us to investigate the relationship between the first and second centered moments, in
the numerator and denominator of tX respectively. In Section 2 above, we showed
that if the distribution is Cauchy, the variance converges toward a unimodal dis-
tribution with the mode lying in the interval (0, 1). However, if the distribution
is double Pareto, the sample variance does not converge towards a stable distri-
bution but becomes more dispersed as the sample size increases. This behaviour
confirms the surprising results obtained elsewhere (Ibragimov, 2004; Hajivassiliou,
2008) concerning inference with thick-tailed (TT) distributions depending on the
tail thickness parameter, α: for α = 1, the dispersion of the distribution of sample
averages remains invariant to the sample size n, for α < 1 more observations actually
hurt with the variance rising with n. Furthermore, the usual asset diversification
result that spreading a given amount of wealth of a larger number of assets reduces
the variability of the portfolio no longer holds: with returns from a TT distribution
the variability may remain invariant to the number of assets composing the portfolio
if α = 1, while portfolio variability actually rises with the number of assets if α < 1.
In such cases, all eggs should be placed in the same basket. 12

10Using copulas, we could evaluate behaviour with correlated double Pareto draws. See Haji-
vassiliou (2008) for a development of this idea. See also Ibragimov et al. (2003) for some general
results.

11These findings can be proved theoretically along the lines of Appendix A: The theory behind
the Double-Pareto Figures 4(a)-4(b) corresponds to the Logan et al. (1972) case of p = 2 and
Prob(t < −q) ∼ rq−α = Prob(t > q) ∼ `q−α with r = `. When 0 < α < 1 as in (4(a)), the density
of tX has infinite singularities at ±1, while for 1 < α < 2 as in (4(b)) the density is continuous
throughout with modes at ±1.

12For specific analysis of the distribution of the variance of double Pareto distributions with
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Figure 4: t-ratios for Double Pareto Distributions
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6 Rejection Probability Errors of t-ratios

The preceding results are relevant for hypothesis testing in regressions with errors
that are independent and identically distributed from a TT distribution. They are
also relevant for testing the hypothesis of difference in means or other statistics of
two samples when either or both come from a TT distribution.

How serious are the mistakes in such cases if the critical values of a N(0, 1)
distribution are used in classical t-ratio testing? The issue is well illustrated using
the p−value discrepancy plot (Davidson and MacKinnon, 1998).

Let us now summarize results, which are extensively described in Fiorio and
Hajivassiliou (2006). Assume that we have a random sample from a double Pareto
distribution with 1 < α ≤ 2 and we run a test H0 : µ = µ0 against the alternative
HA : µ 6= µ0, where µ is the true mean and µ0 some value on the real line. The
sample mean is used to estimate µ. Performing such a test using the standard normal
rather than the correct distribution causes the null hypothesis to be under-rejected
by quite a small amount, not larger than 5% for tests of size 5%, and even less for
tests of size 1% or 10%. This conclusion would often lead us to ignore the caveat of
having a systematic error in rejection probability (ERP) using the standard normal
for testing two-sided hypothesis with a symmetric double Pareto distribution with
1 < α ≤ 2. However, three important points should be noted.

The first is that the policy of ignoring the true nature of the t-ratio distribution
under this particular DGP may be an acceptable policy if the size of the test is
smaller than 10%. If the test has a larger size - for instance 40% - the ERP can
be larger than 10 and is obviously more difficult to tolerate.13 Second, if the non-
symmetric double Pareto distribution is considered, then the t-ratio statistic is not
even stable. Finally, although the “ignore” policy leads to minor errors (below ±5%)
for one sided tests in the case of the double Pareto distribution, the ERP might be
much larger for other TT processes.

7 Bimodality without Infinite Moments?

In order to investigate the relative importance of tail thickness and non-existence of
moments, we consider a distribution truncated on a compact support, characterized
as follows:

Z =

{
X iff |X| < c
NA otherwise

(18)

where X is a standard Cauchy(0,1). The cutoff parameter c is a positive finite real
number. Since the support of this distribution is by construction finite and compact,
the moments of the r.v. Z are all finite.

The first trimmed distribution truncated on a compact support as in (18) that
we consider is the Cauchy X ∼ Cauchy(0, 1), while the second is the double Pareto

infinite mean, and of the relationship between the sample mean and variance in this case, the
interested reader is referred to the extended online version of this paper, Fiorio et al. (2008).

13Although tests of size larger than 10% are rather unusual in economics it is much less so in
other disciplines, such as physics, where the main point is often to maximize the power of the
test, rather than to minimize its size. Also in physics and other related sciences, it is common to
consider the “probable error” of a test procedure, which corresponds to a significance level of 50%.
In such cases it is common to find confidence intervals with about 60% coverage probability (see
for instance Karlen, 2002).
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law introduced introduced in subsection 5.2.
By considering truncated versions of distributions whose untruncated counter-

parts do not have finite moments, we can control the relative importance of the tails
while working with distributions with all moments finite. In the simulations below,
we consider the following truncation points:

Truncated Cauchy
c 500 1,000 3,000 5,000
prob(cutoff tails) 0.0012 0.0006 0.0002 0.0001

Truncated Double Pareto
c 5,000 100,000 250,000 500,000
prob(cutoff tails), α = 0.5 0.049 0.011 0.0069 0.0048

The higher the absolute value of c is, the less attenuated the impact of tail
behaviour will be. In contrast, low absolute values of c imply cutting out most of
the (thick) tails of the distribution.

The general conclusion is that the bimodality can appear also when moments
are finite and the sample size is finite, but reasonably large for many empirical
applications. Our results with N = 500 show that the source of the bimodality is
the rate of tail behaviour and not unboundedness of support or non-existence of
moments (Figure 5), the non-normal behavior being more evident the larger the
truncation point c.

The heuristic explanation for these results is that any large draw in a finite sample
from the underlying TT distribution will tend to dominate both the numerator and
denominator of a t ratio statistic, even if the DGP distribution has bounded support.
Especially when there is a single extremely large draw that dominates all others, then
the t will be approximately ±1, therefore leading to a distribution that has modal
activity in the neighbourhood of these two points. Clearly, it is not necessary for the
distribution to have infinite moments or unbounded support for this phenomenon
to occur.

8 Conclusions

This paper has investigated issues of inference from data based on independent
draws from TT distributions. When the distribution is TT with infinite moments,
the standard t-ratio formed from a random sample does not converge to a standard
normal distribution and the limit distribution is bimodal. Conventional inference
is invalidated in such cases and errors in the rejection probability in testing can be
serious. Bimodality in the finite sample distribution of the t-ratio arises even in
cases of trimmed TT distributions, showing that non-existence of moments is not
necessary for the phenomenon to occur.
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9 Appendix A: Proof of Theorem 1

Proof. Part (a):

We start by finding the characteristic function of X2
i . This is

E
(
eivX

2
i

)
=

∫ ∞
−∞

eivx
2
dx

π(1 + x2)
=

∫ ∞
0

eivrdr

πr1/2(1 + r)
=

(
Γ

(
1

2

))−1

Ψ

(
1

2
,
1

2
;−iv

)
where Ψ is a confluent hypergeometric function of the second kind. It follows that

the characteristic function of S2 = n−2Σn
1X

2
i is:

E
(
eivS

2
)

= Πn
i=1E

(
eivX

2
i /n

2
)

=

[(
Γ

(
1

2

))−1

Ψ

(
1

2
,
1

2
;−iv/n2

)]n

We now use the following asymptotic expansion of the Ψ function (se Erdélyi, 1953,

p. 262):

Ψ
(

1
2
, 1

2
; −iv
n2

)
= Γ

(
1
2

)
+

Γ(− 1
2)

Γ( 1
2)

(−iv
n2

)1/2
+ o(1/n)

so that (19) tends as n→∞ to:

exp

{
Γ(− 1

2)
Γ( 1

2)
2 (−iv)1/2

}
= exp

{ −2
π1/2 (−iv)1/2

}
.

Using the argument given in the text from equations (12) to (13) we deduce (7)

as stated.

Part (b):

We take the joint Laplace transform L(z, w) =
∫∞
−∞

ezx+wx
2

π(1+x2)
dx

and transform x→ (r, h) according to the decomposition x = r1/2h where r = x2

and h = sgn(x) = ±1. Using the Bassel function integral∫
h

ezrh/2dh = 0F1

(
1

2
,
1

4
z2r

)
= Σ∞k=0

(z24)krk

k!
(

1
2

)
k

we obtain

L(z, w) =
1

π

∞∑
k=0

(z2/4)k

k!
(

1
2

)
k

∫ ∞
0

ewrrk−1/2

(1 + r)
dr =

1

π

∞∑
k=0

(z2/4)kΓ
(
k + 1

2

)
k!
(

1
2

)
k

Ψ

(
k +

1

2
, k +

1

2
,−w

)
(19)

from the integral representation of the Ψ function (Erdélyi, 1953, p. 255). We now

use the fact that

Ψ

(
k +

1

2
, k +

1

2
;−w

)
= Γ

(
1

2
− k
)

1F1

(
k +

1

2
, k +

1

2
;−w

)
(20)

+
Γ
(
k − 1

2

)
Γ
(
k + 1

2

)(−w)1/2−k
1F1

(
1,

3

2
− k;−w

)
(see Erdélyi, 1953, p. 257)
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Γ
(

1
2
− k
)

= π

(−1k)Γ(k+ 1
2)

and 1F1

(
k + 1

2
, k + 1

2
;−w

)
= e−w

Combining (19) and (20) we have:

L(z, w) =
∞∑
k=0

(−z2/4)k

k!
(

1
2

)
k

e−w (21)

+
1

π

∞∑
k=0

(z2/4)kΓ
(
k − 1

2

)
k!
(

1
2

)
k

(−w)1/2−k
1F1

(
1,

3

2
− k;−w

)

Let z = iu
T

, w = iv
T 2

It follows from (21) that

L
(
iu
T
, iv
T 2

)
= 1 +

(
Γ(− 1

2)
π

∑∞
k=0

(− 1
2)
k
(u/4iv)k

k!( 1
2)
k

)(−iv
T 2

)1/2
+ o

(
1
T

)
and thus[
L
(
iu
T
, iv
T 2

)]T → exp

{
Γ(− 1

2)
π 1F1

(
−1

2
, 1

2
; u

2

4iv

)
(−iv)1/2

}
Since cfX,S2(u, v) =

[
L
(
iu
T
, iv
T 2

)]T
and Γ

(
−1

2

)
= −2π1/2,

we deduce that

cfX,Y (u, v) = exp

{
− 2

π1/2 1F1

(
−1

2
,
1

2
;
u2

4iv

)
(−iv)(1/2)

}
(22)

as required for (8).

The second representation in this part of the Theorem is obtained by noting that

a−1xa1F1(a, a+ 1;−x) = Γ(a)− e−xΨ(1− a, 1− a, x)

(Erdélyi, 1953, p. 266). Using this result we find(
−1

2

)−1

(−iv)1/2
1F1

(
−1

2
,
1

2
;
u2

4iv

)
=

1

2
|u|
{

Γ

(
−1

2

)
− eu2/4ivΨ

(
3

2
,
3

2
;
−u2

4iv

)}
.

(23)

Using (23) in (22) we obtain (9) as stated.

Part (c):

To prove equations (10) and (11), note that

S2
X = S2 − n−1X

2
= S2 + Op(n

−1) since X ⇒ Cauchy (0,1). Similarly, tX =

X [S2 +Op(n
−1)]

−1/2
= t+Op(n−1) as required.

Part (d):

To prove that the density of the t-ratio has singularities with infinite poles at

±1, it suffices to note that in the notation of Logan et al. (1972), the case of the

t-ratio (6) based on i.i.d. Cauchy draws corresponds to their parameters: p = 2,

α = 1, and r/l = 1. Then their equations (5.1) and (5.2) and Lemmas A and B

guarantee the result.
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